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An analytical and closed-form vibration transmissibility of a general
unidirectional multi-degree-of-freedom system with multiple dynamic absorbers is
studied in this paper. The dynamics of the primary system and the dynamic
absorbers are described as a two-way state-#ow graph model. To reduce the
analysis work and simplify the representation of the derived results for analysis, the
entire graph model is divided into two parts, the primary system and the dynamic
absorbers. Based on the graph model, the analytical and closed-form expressions of
the force and displacement transmissibility are derived using the topology scheme.
According to the developed results, the vibration transmissibility for a uniform
primary system can be represented as polynomial forms. Moreover, the vibration
transmissibility of a uniform MDOF primary system with multiple non-identical
absorbers, with multiple identical absorbers, and with a single absorber, are
calculated and compared with those presented in other papers. Finally, two
numerical examples are investigated to show the implementation of this method.

( 2000 Academic Press
1. INTRODUCTION

Dynamic absorbers attached to primary systems to reduce vibration are widely
used in many engineering "elds. There are two dominant objectives in their
application. One of the objective is to reduce the displacement (velocity or
acceleration) motion transmitted from the vibrating foundation. The other is to
reduce the force transmission from an oscillating machine to the foundation [1].
Use of a viscously damped dynamic absorber attached to a single-degree-of-
freedom (SDOF) primary system to reduce the force and displacement
transmissibility has been discussed in related textbooks [2}4]. In order to achieve
wide band vibration attenuation and improve the robustness, many researchers
[5}10] have investigated two or more dynamic absorbers attached to a SDOF
primary system. For some mechanical and civil engineering applications, it is an
oversimpli"cation to represent the primary system as a SDOF model for dynamic
analysis. Use of the uni-directional multi-degree-of-freedom (MDOF) model for
force and displacement transmissibility analysis may be more appropriate in these
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applications [11]. The e!ect of the vibration transmissibility of a MDOF primary
system with a dynamic absorber has been studied using a numerical analysis
method [12]. Use of the matrix method for the analysis of multiple absorbers
attached to the md.o.f. primary system was also investigated [13, 14]. However,
these methods are primarily suited for numerical computation.

For a uni-directional MDOF primary system, the dynamics of each degree of
freedom of the primary system is coupled with that of others. When multiple
absorbers are attached to the primary system, the coupling of the primary and the
absorber systems will make the dynamic analysis more complex. For
a uni-directional MDOF system, an algebraic algorithm [15] was proposed for the
analysis of linear MDOF systems. This algorithm, however, is not appropriate in
the calculation of the system coupled with multiple absorbers. Moreover, an
analytical procedure was presented for the evaluation of the transmissibility of
a uni-directional MDOF system with an absorber attached to the "rst mass [16].
However, this method is more suitably useful in the analysis of a uniform primary
system, which has equal mass, spring and damping.

In this paper, analytical and closed-form force and displacement transmissibility
of a uni-directional MDOF system with multiple dynamic absorbers is derived. The
analysis uses a two-way state-#ow graph model, which has been investigated by the
author [17, 18, 19]. In general, the absorbers are determined for a given primary
system in the design. Analysis will be more convenient if the representation of
coupling between the primary system and the absorbers can be simpli"ed. For this
reason, the entire system is divided into two parts, the dynamic absorbers and the
primary system. The dynamic characteristics of both subsystems are "rst calculated
individually. Then the vibration transmissibility of the entire system is obtained
according to the dynamic characteristics of both subsystems and their interaction.
Based on the derived formula, the vibration transmissibility of a uniform MDOF
primary system with multiple non-identical identical absorbers, with multiple
identical absorbers, and with a single absorber is calculated and compared with the
results from in other papers. Finally, two numerical examples are investigated to
understand the implementation of this method.

2. STATE-FLOW GRAPH MODEL

M dynamic vibration absorbers attached to an N degree of freedom primary
system as shown in Figure 1 are considered. Two cases of vibration transmissibility,
force and displacement transmissibility are investigated in this paper. First, the
force transmissibility, de"ned as the magnitude of the ratio of the force transmitted
to the base subjected to periodical excitation force acting on the top f

top
(t) of the

primary system, is investigated. To simplify the analysis, it is assumed that the base
is rigid without motion. Since the excitation is periodical, the response of each
degree of freedom of the primary system and absorbers will also be periodical with
the same frequency. Thus, these steady state responses can be represented
exponentially.



Figure 1. Schematic diagram of an N DOF primary system with M dynamic absorbers.
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For the primary system, the relationship of the force and the displacement at
both terminals of the spring and dashpot in the unit i may be expressed as
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juc
i
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i

, (1)

where u is the excitation frequency. k
i
and c

i
are the sti!ness and damping of the

massless spring and dashpot in unit i, X
i
and F

i
are the Fourier transform of x

i
(t)

and f
i
(t), in which x

i
(t) and f

i
(t) are the displacement of the lumped mass and the

force acting on the end of the spring and dashpot in the unit i of the primary
structure respectively.

Based on Newton's law, the governing equation for the lumped mass m
i
is given

as

F
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"F
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u2X

i
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Based on equations (1) and (2), the dynamics of the unit i can be expressed as
a two-way state-#ow graph model as shown in Figure 2. For the dynamic
absorbers, since the structure of each absorber is similar to that of each unit of the
primary structure, each absorber can also be analogous to the same two-way
state-#ow graph model. Thus, the graph model of the entire system can be
assembled by connecting the state-#ow graph model for each unit of the primary



Figure 2. State-#ow graph model for the ith unit of the primary system.
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and that for the absorber systems according to the con"guration of the entire
system expressed as Figure 3. In Figure 3, m

a, i
, k

a, i
, and c

a, i
are the mass, sti!ness

and damping of the ith absorber. The states F
top

, F
base

and X
N

are de"ned as the
Fourier transform of the excitation force f

top
(t), the force transmitted to the base

f
base

(t) and, x
N
(t) respectively.

3. TRANSMISSIBILITY ANALYSIS

The state-#ow graph model of the entire system can be divided into two
sub-models. One of the sub-models, including the part of the graph model lower
than the variables F

top
, corresponds to the primary system. The other one, including

the part of the graph model higher than F
top

, corresponds to the absorbers. Based
on the model reduction model [18], both sub-models can be reduced to two
standard two-way state-#ow models. For the force transmissibility analysis, the
state #ow graph model of the entire system can be redrawn as shown in Figure 4, in
which >

p
and ¹

f, p
are the mobility and the complex force gain from the top to the

base of the primary system, and Z
a

is the impedance of the absorbers. From the
reduced model, we see that the impedance of the absorbers and the mobility of
the primary system form a closed loop. Thus, the complex frequency response
function [11] of the force transmitted to the base, H, de"ned as F

base
/F

top
, is given as

H"

¹
f,p

1!>
p
Z

a

. (3)

Since these absorbers are connected to the primary system in parallel, the total
impedance of all of the absorbers is equal to the summation of that of each
absorber. Thus, the total impedance of the absorbers leads to
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Figure 3. State-#ow graph model of the entire system.

Figure 4. Reduced graph model for force transmissibility analysis.
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Both functions of ¹
f,p

and >
p

can be calculated by the gain formula [20]
described as

G"+
i

P
i
D

i
/D, (5)

where G is the frequency response function, P
i
is the path gain of the ith forward

path, D is the determinant of the graph, and D
i
is the cofactor of the ith forward

path determinant of the graph with the loops touching the ith forward path
removed.

For calculating the functions of ¹
f,p

and >
p
, the determinant of the graph of

the primary system should be calculated "rst. According to Figure 3, we see that
there are N(N#1)/2 loops in the graph model for the primary system with
loop gains

¸
i, l
"

u2m
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juc
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l"1, 2, 3,2, N!1, N,
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(6)

According to the de"nition, the determinant can be expressed as [19]
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, (7)

in which, E
i, j, k

is a function of each loop gain of the primary graph model de"ned
as
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When the function ¹
f,p

is to be calculated, there is only one forward path with
path gain 1. Thus, ¹

f,p
can be expressed as
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For calculating the function >
p
, there are N forward paths passing through the

sti!ness and damping block of each subsystem. The path gains are 1/( juc
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Figure 5. Reduced graph model for displacement transmissibility analysis.
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Substituting equations (4), (9), and (10) into equation (3), the complex frequency
response function of the force transmission H leads to
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(11)

From equation (11), we see that H is a complex fraction, in which both
denominator and numerator are polynomials of ju. Since the force transmissibility
of the system is de"ned as the magnitude of the complex frequency response
function H, the force transmissibility will be equal to the absolute value of the ratio
of the numerator to the denominator of H.

Next, the displacement transmissibility, de"ned as the magnitude of the ratio
of the displacement transmitted to the top of the primary system x

top
(t) subjected

to periodical displacement excitation from the base x
base

(t), is investigated.
The two-way state-#ow graph model as shown in Figure 3 can be also applied
for analysis. However, the input should be replaced by the variable X

base
,

which enters the graph from the base-right corner, to match the excitation
source. Moreover, the output variable becomes X

N
. This graph model can also

be dealt with in two parts, the primary system and the absorbers, as described in
the analysis of force transmissibility. Using the graph model reduction method,
the entire graph model can be expressed as Figure 5. According to Figure 5,
the complex frequency response function of the displacement transmission H @ can
be obtained as

H@"
¹
x,p

1!>
p
Z

a

, (12)
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in which the complex displacement gain ¹
x,p

from the base to the top can be proved
as equal to the complex force gain ¹

f,p
expressed as

¹
x,p

"¹
f,p

. (13)

According to equations (3), (12), and (13), we see that the complex frequency
response function of the force and the displacement transmissions are identical:

H"H @. (14)

Thus, both the velocity transmissibility from base to top and the force
transmissibility from top to base, are identical de"ned as vibration transmissibility,
¹R.

In many applications, the acceleration transmissibility from the base of the
primary system to the top is considered. It is easy to prove that the acceleration,
the velocity, and the displacement transmissibility are equal to the force
transmissibility.

4. ANALYSIS FOR SOME SPECIAL CASES

In considering the case of a md.o.f. primary system with multiple non-identical
absorbers, the mass, sti!ness, and damping of each subsystem will be identical,
given as mN , kM , and cN . According to equations (9) and (10), the mobility and the
complex force gain of the primary system can be represented as
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Thus, the complex frequency response function H can be obtained by substituting
equations (15), (16), and (4) into equation (3) giving

H"( jcN u#kM )N#
M
<
i/1

(!m
a, i

u2#juc
a, i
#k

a, i
)NA

M
<
i/1

(!m
a, i

u2#juc
a, i
#k

a, iB

]
N
+
l/0

(N#l ) !
2l!(N!l) !

( jcN u#kM )N~1 (!mN u2)l!
M
+
i/1

m
a, i

u2( juc
a, i
#k

a, i
)



VIBRATION TRANSMISSIBILITY 801
]
M
<
p/1
pOi

(!m
a, p

u2#juc
a,p

#k
a,p

)
N~1
+
l/0

(N#l ) !
(2l#1) ! (N!l!1) !

]( jcN u#kM )N~l~1(!mN u2)l). (17)

This result can also be calculated directly using equation (11). Equation (17) can be
rewritten as a non-dimensional expression as
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where m
a, i

and uN
a, i

are the damping ratio and natural frequency of the ith absorber,
m
P

and uN
P

are the damping ratio and natural frequency of each unit of the primary
system, o

a, i
is the ratio of the mass of the ith absorber to that of one unit of the

primary system.
When all absorbers are identical even for a uniform primary system, the

mass, sti!ness and damping of each absorber are given as mN
a
, kM

a
, and

cN
a

respectively. Thus, the complex frequency response function H can be
simpli"ed to
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When the number of the absorbers is reduced to one, the response will be equal to
equation (19) except that only M in the equation is replaced by 1. This response is
equal to that developed in reference [16].
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If only a single d.o.f. of the primary system with M non-identical absorbers is
considered, the complex frequency response function H is
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When the number of the absorbers is reduced to one, the response becomes
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Equations (20) and (21) can be con"rmed by the results of some references [9, 10].

5. NUMERICAL EXAMPLES

Two examples are investigated to illustrate the e$ciency of the present method.
In the "rst example, "ve identical absorbers attached to the top of a three-degree-
of-freedom. uniform linear mechanical system are considered. The mass, sti!ness
and damping for each unit of the primary system is mN , kM , and cN and for each
absorber is mN

a
, kM

a
, and cN

a
respectively. The complex frequency response function

H can be obtained directly from equation (11) as
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The second example is a two-degree-of-freedom primary system with two
absorbers attached on its top. The dynamic properties of the mechanical system
and the absorbers are given as: m
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2
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1
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"0)1 N/m/s. Using equation (6), the complex frequency response
function H can be calculated as
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Figure 6. Vibration transmissibility of a two-d.o.f. primary system with two dynamic absorbers:
- - -, without absorbers; **, with two absorbers.
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The vibration transmissibility ¹R, de"ned in section 3, is equal to the magnitude of
the complex frequency response function H. If units of the frequency u in equation
(23) is radian, the force transmissibility will be non-dimensional as shown in the
solid line of Figure 6. If the vibration transmissibility of the primary system without
absorbers is considered for comparison, it can be calculated using the same
equation (6), neglecting the part for the dynamics of the absorbers. The results are
shown as a dashed line of the same "gure.

6. CONCLUSIONS

Analytical force and displacement transmissibility of a general md.o.f. linear
damped system with multiple dynamic absorbers has been proposed. This analysis
is based on a two-way state-#ow graph model. This representation can o!er insight
into the dynamic behavior of the coupling system. Based on the graph model, the
analytical expressions for both force and displacement transmissibility have been
derived. The two types of vibration transmissibility have been proven to be
identical. One of the advantages is that the results can be obtained using the graph
model without calculating the eigenvalues, model shape, or resorting to complex
operations, such as inversion or iteration. Since the primary system and the
absorbers deal with using the subsystem concept, the analysis work is simpli"ed
and the coupling between the primary system and the absorbers in the
representation of the results is reduced. Based on the developed results, the
vibration transmissibility for a uniform primary system can be represented as
a polynomial form. Moreover, some special cases, such as a uniform MDOF
primary system with multiple non-identical absorbers, with multiple identical
absorbers, with a single absorber, as well as a SDOF primary system with multiple



804 W.-J. HSUEH
non-identical identical absorbers and with multiple identical absorbers, have been
calculated and compared to those proposed in other papers.

Finally, the implementation of this method has been illustrated using two
examples, a three-d.o.f. uniform linear system with "ve identical absorbers, and
a two-degree-of-freedom primary system with two absorbers. Based on the model
developed and the formula derived in this paper, it is easy to apply this method in
designing the dynamic absorbers for vibration reduction of mechanical systems.
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